TLEP White Paper: Executive Summary

- TLEP: A first step in a long-term vision for particle physics
 - In the context of a global project

CERN implementation

J. Osborne and C. Waajer

- See Design Study Proposal at
 - http://tlep.web.cern.ch/
- Most recent workshop 4-5 April 2013 (CERN)
 https://indico.cern.ch/conferenceDisplay.py?ovw=True&confld=240814
- Next workshop 25-26 July 2013 (FNAL)

Scientific Motivation

Today's situation

A (very) Standard Higgs boson

Best Fit Predictions $h \to \gamma \gamma$ $h \to ZZ$ $h \to WW$ $h \to gg$ $h \to \mu \mu$ $h \to \tau \tau$ $h \to bb$ ** CMSSM high mass CMSSM low mass NUHM1 SM unc. Higgs WG

-20 0

 $(BR-BR_{SM})/BR_{SM}(\%)$

World average Ellis & You

J. Ellis et al.

- No new physics all the way to several 100's GeV (SUSY) or more
 - Next run at 14 TeV will extend the coverage to ~500 GeV (SUSY) or more
 - Very strong incentive to look for multi-TeV new Physics
 - **→** Linear Colliders with $\sqrt{s} = o(\text{TeV})$ do not cover this Physics case

What else, then?

What next?

Build a new 80-100 km circular tunnel :

- TLEP Physics case: Precision measurements sensitive to multi-TeV New Physics
 - TeraZ (\sqrt{s} ~m_Z), MegaW (\sqrt{s} ~2m_W), Higgs Factory (\sqrt{s} ~240 GeV), top (\sqrt{s} ~350 GeV)
 - ➡ With luminosity 20-1000 × larger than projects of similar timescale and cost
- Followed by VHE-LHC: Direct search for New Physics in the 10-100 TeV range
 - √s ~ 100 TeV with 20T magnets
 - → Also allows the HHH coupling to be measured to a few %

Luminosity at TLEP (1)

- Luminosity increases when √s decreases at circular colliders
 - By optimal use of the RF power to collide more bunches when SR decreases (1/E4)

- And circular colliders can have multiple IP's
 - e.g., four detectors at LEP: multiply integrated luminosity by a factor four
- Ultimate precision measurements are therefore made possible at circular colliders

Luminosity at TLEP (2)

- \Box Luminosity achieved by reducing the vertical $\beta*$
 - From 5 cm (LEP2) to 1 mm (TLEP)
 - Note: 0.3 mm soon to be realized at SuperKEKB
 - Vertical beam size ~ 200 nm
 - Note: 1 to 5 nm for Linear Colliders
 - ➡ Hence negligible Beamstrahlung for Physics, beam energy well known
- At these luminosities, beam lifetime ~ 15 minutes (Bhabha scattering)
 - Solution: continuous top-up injection, as at PEP-II
 - Note: Soon to be realized at Super-KEKB, beam lifetime ~ 5 minutes

Challenges (A subset)

Beamstrahlung

- Radiating e[±] pushed outside the acceptance
 - Reduces the beam lifetime significantly
- Need to design an achromatic optics at the IPs
 - with 2-3% momentum acceptance

Efficient RF system

- Need 12 GeV/turn at 350 GeV
 - ~900 m of SC RF cavities @ 20 MV/m
 - ▶ LEP2 had 600 m at 7 MV/m
- ◆ Very high power: up to 200 kW / cavity in the collider ring
 - Power couplers similar to ESS 700-800 MHz preferred

Small vertical emittance

- Can further reduce beamstrahlung by minimizing $\varepsilon_{\rm v}/\varepsilon_{\rm x}$
 - Aim is to reach 0.1% (LEP2 had 0.4%)

Operation at the Z pole

- ◆ 2625 bunches : e+ source, impedance effects, parasitic collisions
 - May need two rings designed to separate e⁺ and e⁻ beams

BNL 5-cell 700 MHz cavity

RF Coupler (ESS/SPL)

Physics case as a Higgs Factory (1)

□ Number of Higgs bosons produced at \sqrt{s} = 240-250 GeV

	ILC-250 LEP3-240		TLEP-240	
Lumi / IP / 5 years	250 fb ⁻¹	500 fb ^{−1}	2.5 ab ⁻¹	
# IP	1	2 - 4	2 - 4	
Lumi / 5 years	250 fb ^{−1}	1 - 2 ab ⁻¹	5 - 10 ab ⁻¹	
Beam Polarization	80%, 30%	1	_	
L _{0.01} (beamstrahlung)	86%	100%	100%	
Number of Higgs	70,000	400,000	2,000,000	
Upgradeable to	ILC 1TeV CLIC 3TeV?	HE-LHC 33 TeV	VHE-LHC 100 TeV	

- In a given amount of time, Higgs coupling precisions scale like
 - e.g., for g_{HZZ} : 1.5% for ILC: 0.65% for LEP3: 0.2% for TLEP

Physics case as a Higgs Factory (2)

Summary of the ICFA Higgs Factory Workshop (FNAL, Nov. 2012)

Accelerator →	LHC	HL-LHC	LC	Full ILC	CLIC	I EP3, 4 IP	TLEP, 4 IP
Physical Quantity	300 fb ⁻¹ /expt	3000 fb ⁻¹ /expt	250 GeV 250 fb ⁻¹	250+350+ 1000 GeV	350 GeV (500 fb ⁻¹) 500 GeV (500 fb ⁻¹) 1.4 TeV (2 ab ⁻¹)	240 GeV 2 ab ⁻¹ (*)	240 GeV 10 ab ⁻¹ 5 yrs (*)
			5 yrs	5yrs each	5 yrs each	5 yrs	350 GeV 1.4 ab ⁻¹ 3 yrs (*)
N_{H}	1.7×10^7	1.7×10^{8}	$6 \times 10^4 \text{ZH}$	10^5 ZH $1.4 \times 10^5 \text{ Hvv}$		$4 \times 10^5 \text{ZH}$	$2 \times 10^6 \text{ZH}$
m _H (MeV)	100	50	35	35	~70	26	7
$\Delta\Gamma_{ m H}$ / $\Gamma_{ m H}$			10%	3%	6%	4%	1.3%
$\Delta\Gamma_{ m inv}$ / $\Gamma_{ m H}$	Indirect (30%?)	Indirect (10%?)	1.5%	1.0%		0.35%	0.15%
$\Delta g_{ m H\gamma\gamma}$ / $g_{ m H\gamma\gamma}$	6.5 - 5.1%	5.4 - 1.5%		5%	N/A	3.4%	1.4%
$\Delta g_{ m Hgg}$ / $g_{ m Hgg}$	11 - 5.7%	7.5 - 2.7%	4.5%	2.5%	N/A	2.2%	0.7%
$\Delta g_{ m Hww}$ / $g_{ m Hww}$	5.7 - 2.7%	4.5 - 1.0%	4.3%	1%	1%	1.5%	0.25%
$\Delta g_{ m HZZ}$ / $g_{ m HZZ}$	5.7 - 2.7%	4.5 - 1.0%	1.3%	1.5%	1%	0.65%	0.2%
$\Delta g_{ m HHH}$ / $g_{ m HHH}$		< 30% (2 expts)		~30%	~20%		
$\Delta g_{ m H\mu\mu}$ / $g_{ m H\mu\mu}$	< 30%	< 10%			15%	14%	7%
$\Delta g_{ ext{H} au au}$ / $g_{ ext{H} au au}$	8.5 - 5.1%	5.4 - 2.0%	3.5%	2.5%	3%	1.5%	0.4%
$\Delta g_{ m Hcc}$ / $g_{ m Hcc}$.7%	2%	4%	2.0%	0.65%
$\Delta g_{ m Hbb}$ / $g_{ m Hbb}$	15 – 6.9%	11 —2.7%	1.1%	1%	2%	0.7%	0.22%
$\Delta g_{ m Htt}$ / $g_{ m Htt}$	11 – 8.7%	8.0 – 3.9 %		15%	3%		30%

Best precision

Physics case as a Higgs Factory (3)

- Need sub-percent precision for a sensitivity to multi-TEV New Physics
 - Compare (LHC), HL-LHC, ILC, (LEP₃), TLEP

Much theoretical work also needed

J. Ellis et al.

Physics case as a Higgs Factory (3)

- Need sub-percent precision for a sensitivity to multi-TEV New Physics
 - Compare (LHC), HL-LHC, ILC, (LEP₃), TLEP

- Summary: TLEP reaches the needed accuracy
 - Much theoretical work also needed

J. Ellis et al.

Impact of TeraZ and MegaW (1)

Revisit and improve the LEP precision measurements

◆ TLEP can do the entire LEP1 physics programme in 5 minutes

	LEP	ILC	LEP ₃	TLEP
√s ~ m _Z	MegaZ	GigaZ	~TeraZ	TeraZ
Lumi (cm ⁻² s ⁻¹) #Z / year Polarization vs LEP1	Few 10 ³¹ 2X10 ⁷ no 1	Few 10 ³³ Few 10 ⁹ easy ~5-10	Few 10 ³⁵ Few 10 ¹¹ yes (T, L) ~50	10 ³⁶ 10 ¹² yes (T,L) ~100
√s ~ 2m _W				
Lumi (cm ⁻² s ⁻¹) Lumi / IP / year Error on m _W	Few 10 ³¹ 10 pb ⁻¹ 220 MeV	Few 10 ³³ 50 fb ⁻¹ 7 MeV	5x10 ³⁴ 500 fb ⁻¹ 0.7 MeV	2.5x10 ³⁵ 2.5 ab ⁻¹ 0.4 MeV
√s ~ 200-250 GeV				
Lumi (cm ⁻² s ⁻¹) Lumi / IP / 5 years Error on m _W	10 ³² 500 pb ⁻¹ 33 MeV	5×10 ³³ 250 fb ⁻¹ 3 MeV	10 ³⁴ 500 fb ⁻¹ 1 MeV	5X10 ³⁴ 2.5 ab ⁻¹ 0.4 MeV

- Important : Polarization up to the WW threshold with TLEP
 - Very precise beam energy determination (10 keV): unique to circular colliders
 - → Measure m_Z , Γ_Z to < 0.1 MeV, m_W to < 1 MeV, $\sin^2\theta_W$ to 2.10⁻⁶ from A_{LR}

Impact of TeraZ and MegaW (2)

- Case 1 : Only SM physics in EW Radiative Corrections Stringent SM Closure test
 - Set stringent limits on weakly interacting new physics (m_H, m_W and m_{top} known)

- Case 2 : Some weakly interacting new physics in the loops ?
 - Will cause inconsistency between the various observables
 - Become sensitive to multi-TeV WINP
 - LEP1 was sensitive to ~ 200 GeV (m_{top})

Physics case of the energy upgrades (1)

All existing proposals have access to larger √s

- To discover New Physics in a direct manner
- ◆ To measure more difficult Higgs couplings : g_{Htt} and g_{HHH}
 - ILC350 can be upgraded to ILC500/ILC1TeV, or even to CLIC (3 TeV) [?]
 - LEP3 can be upgraded to (or preceded by) HE-LHC (33 TeV)
 - TLEP can be upgraded to VHE-LHC (100 TeV)

Physics case of the energy upgrades (2)

- Summary for Htt and HHH couplings
 - Other Higgs couplings benefit only marginally from high energy

• TLEP + VHE-LHC looks like a winning team

Conclusions

- We believe TLEP to be the best complementary machine to LHC
 - Higgs properties precision measurements; Stringent test of the SM closure.
- TLEP is based on a well-known technology
 - Supported by much progress in e⁺e[−] circular factories for 20 years (and counting)
 - LEP, LEP2, (super) b factories, synchrotron light sources
 - Based on this experience, luminosity, power and cost predictions will be reliable
- It is a first step in a long-term vision for high-energy physics
 - Many synergies with VHE-LHC (pp collisions at 100 TeV)
 - Tunnel, accelerator, experiments, physics
- The design study is starting up as we speak, supported by CERN strategy
 - Join us at http://tlep.web.cern.ch
- The goal is to have a technically-ready proposal by 2018
 - So that the community can take a fully-informed decision
 - with the LHC Run2 results at $\sqrt{s} = 13-14$ TeV in hand
- We aim for physics in 2030